Your sensor is more sensitive than you think

 

We all know that pellistor sensors are one of the primary technologies for detecting hydrocarbons.  In most circumstances, they’re a reliable, cost-effective means of monitoring flammable levels of combustible gases.

As with any technology, there are some circumstances in which pellistors shouldn’t be relied on, and other sensors, like infrared (IR) technology, should be considered.

Problems with pellistors

Pellistors are generally extremely reliable at detecting flammable gases.  However, every type of technology has its limits, and there are a few occasions where pellistors shouldn’t be assumed to be most suitable.

Perhaps the biggest drawback of pellistors is that they’re susceptible to poisoning (irreversible loss of sensitivity) or inhibition (reversible loss of sensitivity) by many chemicals found in related industries.

What happens when a pellistor is poisoned?

Basically, a poisoned pellistor produces no output when exposed to flammable gas. This means a detector would not go into alarm, giving the impression that the environment was safe.

Compounds containing silicon, lead, sulphur, and phosphates at just a few parts per million (ppm) can impair pellistor performance.  So whether it’s something in your general working environment, or something as innocuous as cleaning equipment or hand cream, you could be compromising your sensor’s effectiveness without even realising it.

What’s so bad about silicons?

Silicons have their virtues, but they may be more prevalent than you think; including sealants, adhesives, lubricants, and thermal and electrical insulation. They can poison pellistor sensors at extremely low levels.  For example, there was an incident where a company replaced a window pane in a room where they stored their gas detection equipment.  A standard silicon-based sealant was used in the process, and as a result all of their pellistor sensors failed their subsequent testing.  Fortunately this company tested their equipment regularly; it would have been a very different and more tragic story had they not done so.

Situations like this ably demonstrate the importance of bump testing (we’re written about it previously – take a look), which highlights poisoned or inhibited sensors.

What can I do to avoid poisoning my sensor?

Be aware, in essence –bump-test your equipment regularly, and make sure your detectors are suited to the environment you’re working in.

Find out more about infra-red technology in our previous blog.

  

Pellistor sensors – all you need to know

We’ve written about pellistor sensors before, but the information still remains vital and useful.  Here’s all you need to know…

Pellistor sensors (or catalytic bead sensors) have been the primary technology for detecting flammable gases since the ‘60s. Despite having discussed a number of issues relating to the detection of flammable gases and VOC, we have not yet looked at how pellistors work. To make up for this, we are including a video explanation, which we hope you will download and use as part of any training you are conducting:

A pellistor is based on a Wheatstone bridge circuit, and includes two “beads”, both of which encase platinum coils.  One of the beads (the ‘active’ bead) is treated with a catalyst, which lowers the temperature at which the gas around it ignites. This bead becomes hot from the combustion, resulting in a temperature difference between this active and the other ‘reference’ bead.  This causes a difference in resistance, which is measured; the amount of gas present is directly proportional to it, so gas concentration as a percentage of its lower explosive limit (%LEL*) can be accurately determined.

The hot bead and electrical circuitry are contained in flameproof sensor housing, behind the sintered metal flame arrestor (or sinter) through which the gas passes. Confined within this sensor housing, which maintains an internal temperature of 500°C, controlled combustion can occur, isolated from the outside environment. In high gas concentrations, the combustion process can be incomplete, resulting in a layer of soot on the active bead. This will partially or completely impair performance. Care needs to be taken in environments where gas levels over 70% LEL may be encountered.

For more information about sensor technology for flammable gases, read our comparison article on pellistors vs Infrared sensor technology: Are silicone implants degrading your gas detection?.

*Lower Explosive Limit – Learn more

 Click in the top right hand corner of the video to access a downloadable file.

How much life have you got left?

When something stops working, you rarely get a heads-up.  When was the last time you flipped a switch, only for your light bulb to give up the ghost?  Or have you had a cold, frosty morning this winter when your car simply won’t start?

Continue reading “How much life have you got left?”

The importance of bump testing

Bump testing is one of those topics that crops up again and again, but still not everyone gets the point. A gas detector may not respond properly to gas for many reasons. Bump testing is a quick and easy way to ensure yours does. Here is just one example of what can happen if you don’t bump test your equipment.

Continue reading “The importance of bump testing”

Why monitoring oxygen doesn’t protect from carbon dioxide

Carbon dioxide (CO2) is gas used or produced in many industries, if not directly in the products, in cooling and refrigeration systems. Possibly because of its association with breathing (we breathe in oxygen and breathe out CO2), the toxic nature of CO2 is not always appreciated. As a result, some believe that the level of oxygen (O2) in the air is a suitable indicator of safe CO2 levels. However, while monitoring O2 concentrations protects you from asphyxiation, it can’t be relied upon to protect against CO2 poisoning. Making a link between safe levels of CO2 and safe levels of O2 can be a fatal error.

Continue reading “Why monitoring oxygen doesn’t protect from carbon dioxide”

Pellistor sensors – how they work

Pellistor gas sensors (or catalytic bead gas sensors) have been the primary technology for detecting flammable gases since the ‘60s. Despite having discussed a number of issues relating to the detection of flammable gases and VOC, we have not yet looked at how pellistors work. To make up for this, we are including a video explanation, which we hope you will download and use as part of any training you are conducting

Continue reading “Pellistor sensors – how they work”

Minimising Exposure

The key to reducing risk – spend less time exposed to hazards! Technological advances, driven by increasing safety awareness, are providing opportunities to reduce detector maintenance and therefore also reduce the amount of time operators must spend handling detectors and transmitters in hazardous areas.

Andy, Crowcon’s Senior Product Manager, has reviewed the benefits that these developments bring.

Continue reading “Minimising Exposure”

Cross sensitivity of toxic sensors: Chris investigates the gases that the sensor is exposed to

Working in Technical Support, one of the most common questions from customers is for bespoke configurations of toxic gas sensors. This frequently leads to an investigation into the cross sensitivity of the different gases that the sensor will be exposed to.

Cross sensitivity responses will vary from sensor type to sensor type, and suppliers often express the cross sensitivity in percentages while others will specify in actual parts-per-million (ppm) levels.

Continue reading “Cross sensitivity of toxic sensors: Chris investigates the gases that the sensor is exposed to”